Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model

نویسندگان

چکیده

Recently, Internet of Medical Things (IoMT) has gained considerable attention to provide improved healthcare services patients. Since earlier diagnosis brain tumor (BT) using medical imaging becomes an essential task, automated IoMT and cloud enabled BT model can be devised recent deep learning models. With this motivation, paper introduces a novel model, named IoMTC-HDBT. The IoMTC-HDBT comprises the data acquisition process by use devices which captures magnetic resonance (MRI) images transmit them server. Besides, adaptive window filtering (AWF) based image preprocessing is used remove noise. In addition, server executes disease includes sparrow search algorithm (SSA) with GoogleNet (SSA-GN) model. applies functional link neural network (FLNN), ability detect classify MRI as normal or abnormal. It finds useful generate reports instantly for patients located in remote areas. validation takes place against BRATS2015 Challenge dataset experimental analysis carried out interms sensitivity, accuracy, specificity. experimentation outcome pointed betterment proposed accuracy 0.984.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

Optimizing the Grade Classification Model of Mineralized Zones Using a Learning Method Based on Harmony Search Algorithm

The classification of mineralized areas into different groups based on mineral grade and prospectivity is a practical problem in the area of optimal risk, time, and cost management of exploration projects. The purpose of this paper was to present a new approach for optimizing the grade classification model of an orebody. That is to say, through hybridizing machine learning with a metaheuristic ...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Approximate Model-Based Diagnosis Using Greedy Stochastic Search Approximate Model-Based Diagnosis Using Greedy Stochastic Search

We propose a StochAstic Fault diagnosis AlgoRIthm, called Safari, which trades off guarantees of computing minimal diagnoses for computational efficiency. We empirically demonstrate, using the 74XXX and ISCAS85 suites of benchmark combinatorial circuits, that Safari achieves several orders-of-magnitude speedup over two well-known deterministic algorithms, CDA∗ and HA∗, for multiple-fault diagno...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer systems science and engineering

سال: 2023

ISSN: ['0267-6192']

DOI: https://doi.org/10.32604/csse.2023.024674